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Abstract

The problems of bending and stability of Bernoulli-Euler beams are solved analytically on the basis of a simple linear
theory of gradient elasticity with surface energy. The governing equations of equilibrium are obtained by both a
combination of the basic equations and a variational statement. The additional boundary conditions are obtained by
both variational and weighted residual approaches. Two boundary value problems (one for bending and one for
stability) are solved and the gradient elasticity effect on the beam bending response and its critical (buckling) load is
assessed for both cases. It is found that beam deflections decrease and buckling load increases for increasing values of
the gradient coefficient, while the surface energy effect is small and insignificant for bending and buckling, respectively.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical behavior of linear elastic materials with microstructure, such as polymers, polycrystals
or granular materials, cannot be described adequately by the classical theory of linear elasticity, which is
associated with the concepts of homogeneity and locality of stress. When the material exhibits a non-
homogeneous behavior, microstructural effects are important and the state of stress has to be defined in a
non-local manner. These microstructural effects can be successfully modeled in a macroscopic manner by
employing higher-order gradient, micropolar and couple stress theories. For a literature review on the
subject of these theories one can consult the review articles of Tiersten and Bleustein (1974) and Ex-
adaktylos and Vardoulakis (2001), the book of Vardoulakis and Sulem (1995) and the literature review in
the recent paper by Tsepoura et al. (2002).

These theories, usually in simplified forms, have been used during the last fifteen years or so to suc-
cessfully solve various boundary value problems of static and dynamic linear elasticity. Thus, it has been
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found that singularities or discontinuities of classical elasticity theory disappear, size effects are easily
captured and wave dispersion effects are observed in cases where this was not possible in classical elasticity
(e.g. Tiersten and Bleustein, 1974; Exadaktylos and Vardoulakis, 2001; Vardoulakis and Sulem, 1995;
Tsepoura et al., 2002; Altan and Aifantis, 1992; Ru and Aifantis, 1993; Altan et al., 1996; Exadaktylos et al.,
1996; Chang and Gao, 1997; Georgiadis and Vardoulakis, 1998).

In this paper the problems of bending and buckling of Bernoulli-Euler beams are solved analytically on
the basis of a simple theory of gradient elasticity with surface energy. The governing equations of equi-
librium for both bending and buckling problems are derived both by combining the corresponding basic
equations and by using a variational statement. All possible boundary conditions (classical and non-
classical) are obtained with the aid of a variational statement constructed by both the establishment of an
expression for the strain energy and the use of the method of weighted residuals. In addition, boundary
value problems of bending and buckling of beams are solved analytically and the gradient effect on the
response of the beam or its critical (buckling) load is assessed.

The problem of bending of beams has been studied by non-classical theories of elasticity mainly in order
to explain test results, which could not be explained by classical elasticity theory. Thus, Krishna Reddy and
Venkatasubramanian (1978) determined analytically the flexural rigidity of circular cylindrical beams of
Cosserat (micropolar elastic) material, while Lakes (1983, 1986, 1995) and Anderson and Lakes (1994)
investigated the dependence of the flexural rigidity of rods, made of various polymeric foams, upon
specimen size both experimentally and by using the Cosserat (micropolar elasticity) theory. Vardoulakis
et al. (1998) studied the effect of the beam length on the failure load and the variation of the beam curvature
along the beam length both experimentally and on the basis of a gradient theory with surface energy for
Timoshenko beams in flexure. Tsagrakis (2001) briefly considered the case of pure bending of elastic
Bernoulli-Euler rods and verified the test results of Lakes (1983, 1986) by using the simple gradient elas-
ticity theory of Aifantis and coworkers (1992, 1993) and a gradient elasticity theory with surface energy.
Thus, the present paper presents a more systematic and general treatment of bending of beams than in
Lakes (1983, 1986, 1995), Anderson and Lakes (1994), Vardoulakis et al. (1998), Tsagrakis (2001) and in
addition considers buckling of beams.

2. Governing equation and boundary conditions for bending by basic equations and a variational principle

Consider a straight prismatic beam, which is subjected to a static lateral load g(x) distributed along the
longitudinal axis x of the beam, as shown in Fig. 1. Thus the loading plane coincides with the yx plane. The
cross-section of the beam A is characterized by the two axes y and z with the former one being its axis of
symmetry.

In this work the simple gradient elasticity theory with surface energy due to Vardoulakis and Sulem
(1995) is employed. This theory combines the general concepts, ideas and structure of Mindlin’s (1964)
theory with Casal’s (1972) concept on surface energy effects and is associated with only four elastic con-

Fig. 1. Geometry and loading of a prismatic beam in bending.
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stants (two classical and two non-classical) instead of the 18 elastic constants (including the two classical
ones) of Mindlin’s (1964) theory. Thus, the present theory of Vardoulakis and Sulem (1995), because of its
simplicity is much more convenient in applications than Mindlin’s (1964) gradient elasticity theory with 18
elastic constants and the Cosserat and Cosserat (1909) or the micropolar elasticity theory of Eringen (1966)
with six elastic constants. Thus, on the basis of the simple theory of gradient elasticity with surface energy
(Vardoulakis and Sulem, 1995), one has for the one-dimensional case that the Cauchy and double stresses
as well as the total stresses t,, u, and a,, respectively, are given for the case of beam bending by the
constitutive relations

7, = Ee, + (Eé, (1)

i, = (Ee, + g*Eé. (2)

Oy =Ty — du _ Ele —g* de) _ E(e, — g%!) (3)
x — 'x dx - X g dx2 - X g x

where e, represents the axial strain of the beam in bending, the constants ¢ and g? represent material lengths
related to surface and volumetric elastic strain energy, respectively, E is the Young’s modulus and primes
indicate differentiation with respect to x. Since the strain energy is positive definite, the material lengths g°
and £ are restricted, such that (Vardoulakis and Sulem, 1995), 0 < ¢ < g

Conditions of equilibrium require that the resultant of the internal forces on the cross-section should be
zero, and their moment equal to the bending moment M. Thus

/@M:O )

/A o.ydd = —-M (5)
with

dMm dv

w0 o —q(x) (6)

where V represents shear forces.
In view of Eq. (3) and according to Bernoulli-Euler hypothesis (Timoshenko and Goodier, 1970) that
e, = ky, with k denoting the curvature along the x-direction, Egs. (4) and (5) take the form

E(k—g2g>/AydA:0 ™)
E(k—gzg)/Aysz:—M (8)

Egs. (7) and (8) are both satisfied for [, yd4 = 0, indicating that the x-axis is a centroidal one, and

d’*k M
_gz@:_ﬁ ©)

where / = [, *d4 stands for the moment of inertia about the z-axis of the beam.

k
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Utilizing the Bernoulli-Euler’s assumption (Timoshenko and Goodier, 1970) that

d’u
k=-15 (10)
and Egs. (6) and (10), Eq. (9) results in the governing equation of beam in bending
d*m
e El(u" — g%u") = —q(x)
or
El(u" — gu") + q(x) =0 (11)

In this section, the governing equation of equilibrium of a gradient elastic beam in bending as well as the
corresponding boundary conditions are also determined by means of a variational principle. Consider again
the straight prismatic Bernoulli-Euler beam of Fig. 1. On the basis of the aforementioned Bernoulli-Euler
assumptions, the equation of equilibrium of the gradient elastic beam in bending as well as all possible
boundary conditions can be determined with the aid of the variational principle

S(U—W)=0 (12)

where U is the strain energy, W is the total work done by external forces and § indicates variation. Ac-
cording to the one-dimensional gradient elasticity theory with surface energy (Vardoulakis and Sulem,
1995), the strain energy of a beam in bending is defined as

L
U:l//[rx-ex+ux~Vex]ddi (13)
2 JaJo

where e, = —yu” represents the axial strain of the beam, Ve, = de,/dx = —yu’” stands for the strain gradient

and 7, and u, denote the Cauchy and double stresses given by Egs. (1) and (2), respectively.
Substituting Egs. (1) and (2) into Eq. (13) one obtains the following expression for the strain energy
1 L
v=3 / EI[") + g (")} + 20"} dx (14)
0

According to the calculus of variations, the variation of an integral of the type U = fOL F",u")dx, is
obtained through the well-known relation (Lanczos, 1970)
L

Lrd® /oF d 7/ oF d /oF d® / oF
BU—A[aiaﬁ‘aﬂﬁﬁﬂ““+H‘aﬁﬁ)ﬂﬁ<wﬁk4o

oF d [ oF 1 [eF 1"
o (e o], + [a o], (1)

where, for the present case, the Lagrangian function F is

EI
F = 7 [(u//)Z + g2(u///)2 + 26”//u///:| (16)

Egs. (15) and (16) help to express the variation of the strain energy of the beam as

L
SU = / EI™ — g2u") dudx + [EI(g*u" — u") Sul; + [EI(u" — *u™) '] + [EI (0" + g*u) Su"]}
0

(17)
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On the other hand, the variation of the work done by the external force ¢(x), the boundary shear force V
and the boundary classical and non-classical (double) bending moments M and m, respectively, reads

L
W = —/ qdudx — [V dul; + [M Su'ly + [mdu]; (18)
0
In view of Egs. (17) and (18), the variational equation (12) takes the form

d(U—-W) = /0 [EIW" — g*u™") 4 q|dudx + [{V — EI(u" — g*u")} dul}
— M —EI(" — gu™)} 8y — [{m — EI(td" + gu")} 8u"]; = 0 (19)

The above variational equation implies that each term of Eq. (19) must be equal to zero. Thus, the
governing equation of the beam in bending is given by

1™ — g") + g(x) = 0 (20)

which is the same as Eq. (11) derived with the aid of the basic equations, while the boundary conditions
satisfy the equations

V(L) — EIfu"(L) — gqu(L)HSu(L) [V(0) — EIlu"(0) — &°u" (0)]] 5u(0) =
(M(L) — EIu"(L) — ) — EIl"(0) — ¢ IV(O)HSL/(O) (1)
) — E1[tu"(0) + gzu’”(o)]] Su"(0) =

For example, if one assumes the four classical boundary conditions to be u(0), u(L), «/(0) and «'(L) pre-
scribed and the corresponding non-classical ones to be #”(0) and «”(L) prescribed, then 6u(0) = du(L) =0,
o' (0) = du/(L) =0, du”(0) = 6u”(L) = 0 and Egs. (21) are all satisfied. In view of Egs. (21) one can observe
that, when dealing with the classical boundary conditions, either the deflection u or the shear forces
V =EI(u" — g*u") and the strain «' or the bending moments M = EI(u" — g?u'V) at the boundary of the
beam have to be specified. For the case of the non-classical or additional boundary conditions, one has to
specify either the boundary strain gradient #” or the boundary double moments m = EI (¢u" + g*u").

3. Boundary conditions for bending through weighted residuals

In case where the equation of equilibrium or the equation of motion of a boundary value problem is
known, then all possible boundary conditions of the problem can be also determined with the aid of the
method of weighted residuals. This approach is particularly convenient in cases where an expression for the
strain energy is not known or difficult to obtain. In this section, the boundary conditions corresponding to
bending of a gradient elastic beam are determined by means of weighted residuals.

The lateral beam deflection u(x) obeys the governing Eq. (11). Thus, according to the method of
weighted residuals, one has the weak statement

L
/ (E" — @E™ + g)wdx = 0 (22)
0

where w = w(x) is a weighting function. Integrating Eq. (22) by parts two and three times for ! and u"",
respectively, one has
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L L
/ uIVde _ [ulllw _ M”W/]é + / " //dx
0 0
L L
/ uV]de — [MVW uIVW/ + u//lw//]o / " ///dx
0 0
Assuming that w = du, where 6 indicates variation, one obtains from Egs. (22) and (23)
L L
/ (E" — @E™ + q) Sudx = El[u" Su — u" 3]y — g*Elu” du — u"™ 8u’ + u" 8u"]; + E[/ u' du' dx
0 0

L L
JrngI/ u"'5u'"dx—/ qdudx
0 0
or

EI L L
76/ (") + (") + qu]dx = / (El"™ — @El™ + q) dudx + EI[(u" — g*u") 8u);
0 0
— El[(u" — g*u") dul} + EI[g*u" du"]; (24)

Taking into account that the strain energy stored by the gradient elastic beam is that of Eq. (14), Eq. (24)
leads to the expression

L L
%6/ (") + & ") + 20u"u" + qu]dx = / (El — gEl™ + q) Sudx + EI[(«" — g%u™) 8u'];
0 0
— EI(u" — g*u") duly + EI[(tu” 4 g*u") 8u" ]}

or

L
dU = / (EL" — @E™ + q) dudx + EI[(u" — g*u™) 8u'] — EI[(u" — g*u") Sul;
0
+ EI(tu" + g*u") Su"); (25)
In view of Egs. (22) and (25), the following variational statement is implied:
SU = —EI[(u" — gu")dull + EI|(u" — g*u™) 8u'); + EI[(¢u" + g*u™) du"]; (26)

However, according to Egs. (12) and (18), the presence of the boundary shear as well as the boundary
classical and non-classical (double) moments transform the above relation to the equivalent one

Y — EIG" — @)} dull — [{M — EI(" — ¢} ou')s — [{m — EI( + "y sl =0 (27)
Thus it is apparent from Eq. (27) that the boundary conditions satisfy the equations

V(L) = EI" (L) — g*u" (L)]] Su(L) — [V(0) — EI[u"(0) — g*"(0)]] 8u(0) =
[M(L) — EIlu"(L) — u™ (L)]] 8u' (L) — [M(0) — EI[u"(0) — """ (0)]] /(0 ): (28)
[m(L) — EItu" (L) + g*u" (L)]] 8u" (L) — [m(0) — [fu”(0)+g2u’”(0)ﬂ5u’( )=

which, as it is expected, are identical to Egs. (21).
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4. Governing equations and boundary conditions for buckling by a variational principle

In this section, the governing equation of equilibrium of a beam in buckling as well as the corresponding
boundary conditions are determined by means of a variational principle. Consider the beam of the previous
section without lateral load subjected to an axial compressive force P, which can cause flexural buckling for
a certain value of P called elastic buckling load or critical load P, to be determined. The governing equation
of a beam in buckling as well as all possible boundary conditions can be determined with the aid of a
variational principle, which reads as in Eq. (12). The strain energy of the gradient elastic beam in bending is
defined by Eq. (14). Considering in addition the effect of the axial compressive force P, one obtains the
following expression for the strain energy:

L L
U= % / EI(u") + g*(u")” 4 20u"u") dx — % / P(u/)* dx (29)
0 0

According to the calculus of variations, the variation of an integral of the type U = fOL FQ/ o, u")dx is
obtained through the well-known relation (Lanczos, 1970)

BU_/L_ia_Fer_za_F_di@_F sude s [[OF _d (OFN & (OF ] T
“f | \aw ) Tae\aw ) T ad \awr )| o de\aw ) a2 \au )|,

OF d [oF 1t [eF _ "
|5 s (e ) oo, + (2o, 0

where, for the present case, the Lagrangian function F is

EI P
F = 7 [(u//)2 + gZ(u///)Z + 2614””’”] _ (u/)Z (31)

Egs. (30) and (31) help to express the variation of the strain energy of the beam as

L
5U = [ IE1 — fu) + PJouds — (P + EI" — a3l + (E1GC — )l
0
+ [EI (" + g*u") 5u”]; (32)

On the other hand, the variation of the work done by the external force P, the boundary shear force V' as
well as the boundary classical and non-classical (double) moments M and m, respectively, reads

L
W = —/ PSudx — [V Suly + [M3u')} 4 [m&u”]} (33)
0
In view of Egs. (32) and (33), the variational equation (12) takes the form
L
S(U— W) = / ELGN — ™) + P dud + [{V — [P + EI(" — gu)]} du
0

—[{M = EIG" — gu™)} 8uly — [{m — EI(" + g*u")} 8u"); = 0 (34)

The above variational equation implies that each term of Eq. (34) must be equal to zero. Thus, the gov-
erning equation of the beam in buckling is given by

EIW" —gu"" ) + P/ =0 (35)
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while the boundary conditions satisfy the equations
V(L) —[Pd(L) + El[u”’(L) — g u" (L)) Su(L) — [V(0) — [Pu'(0) + EI[u" (0) — g*u" (0)]]] 3u(0) = 0
[M(L) — EIT" (L) — g*u™ (L)]] 8/ (L) — [M(0) — EI[u"(0) — g*u" (0)]] 8/ (0) = 0 (36)
m(L) — EI[6u"(L) +g2u’”(L)]] Su"(L) — [m(0) — EI[¢u"(0) + g% (0)]] 8u"(0) = 0

5. Governing equations and boundary conditions for buckling by basic equations and weighted residuals

The governing equation for a beam in buckling (Eq. (35)) can be easily obtained with the aid of the basic
equations of the problem. Thus one has simply to augment the bending Eq. (20) with ¢ = 0 with the effect of
the axial compressive force P reading Pu”.

In case where the governing equation of the beam in buckling is known, all possible boundary conditions
can also be determined with the aid of the method of weighted residuals.

According to the method of weighted residuals, one has the weak statement

L
/ (E" — gElu™ + Pu")wdx = 0 (37)
0

The first two terms of the integrand of Eq. (37) are treated in the same way as in Section 3 (Eq. (22)). The
third term is integrated by parts once. On the assumption that w = du and taking into account Egs. (12),
(18) and (37), the following variational statement is implied:

[{V — [P + EI(u" — *u")]} Sulg — [{M — EI(u" — gu™)} 8u'ly — [{m — EI(tu" + g*u")} 8]y = 0
(38)

Eq. (38) leads to the boundary conditions that, as in the case of the variational principle approach, satisfy
Eq. (36).

6. Solution of boundary value problems in bending

This section deals with the solution of a boundary value problem for bending. Consider a cantilever
beam of length L with its built-in end at x = 0, subjected to a static uniformly distributed lateral load g. As
it is shown in Section 2, the deflection u(x) of the beam in bending satisfies Eq. (20) or

EI" — gu") = —q(x) (39)

The solution of Eq. (39) is the sum of the solution of its homogeneous part, i.e., the one with ¢ = 0, and a
particular solution of Eq. (39). The former part of the solution is

Uy = 1X° + % + c3x + ¢4 + csg*sinh(x/g) + csg* cosh(x/g) (40)

The classical boundary conditions are #(0) = #'(0) = 0 and M (L) = V(L) = 0 implying, the first two that
du(0) = 8u/(0) = 0, and the second two that u”(L) — g*u'V (L) = " (L) — g?u" (L) = 0. Thus, Egs. (23),, are
satisfied. The non-classical boundary conditions are assumed to be #”(0) = «”"(L) = 0 in case of £ =0 and
u"(0) = [(u"(L) + g*u" (L)] = 0 in case of taking into account the surface energy terms (¢ # 0). Use of the
above boundary conditions in conjunction with a particular solution u, = —(q/24EI)x*, enable one to
determine the constants ¢;—cg of the homogeneous part of the solution u, given by Eq. (40). They are
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¢ =qL/6EI, ¢, = —Z—g(z(c dY + 1), o= (f;)ﬁ(%vd)z + 1) tanh (ﬁ)
cy=— (qi(;;f)t‘(z(c-df +1), es=—(5%) <2+(c.1—d)2> {— I + tanh (g } (41)

¢ = (357 <2+ﬁ> [1 + tanh (g)}

for the case of A =L/g =0, and

2

L
1 = qL/GEI, ¢ = —%(z(c LA+ 1),

(Y, [ e @At (e -d) + 1) eosh () + (2c-d) + 1)sinh (1)
C3—(E>(C' ) Cosh(i).}.imnh(%)

_ Q(C'd)2L4 c-d)?
“= ( 2E] >(2( dy+1), (42)

( q ) 1= 2+2(c-d)(1+(—1+eD)))
s = |+ ,
> \2El (c-d)(1 — J +eled(] + )))

¢ = (51 ){el/w)<‘2<0'd>2)~+e”<‘“"><1H)(z(c-d)ul))}
N (

2E1 c-d)*(1 = A+eV/Cd(1 + 1))
for the case of A =L/g # 0.

Fig. 2(a) shows the variation of the beam deflection #(£) along the dimensionless distance ¢ = x/L for
various values of the gradient coefficient product ¢ - d = (g/D) - (D/L), where D is a characteristic diameter
of the microstructure. The value ¢ - d = 0 corresponds to the classical elastic case. Fig. 2(a) shows that the
deflection of the gradient beam without surface energy decreases as the product ¢ - d increases. Figs. 2(b)
and (c) show the variation of the beam deflection u(¢) along the ¢ for various values of the surface energy
parameter A = ¢/g and with the gradient coefficient product being ¢ - d = 0.05 and ¢ - d = 0.1, respectively.
The obtained results demonstrate that for small values of the product ¢ - d (¢ - d <0.05), the surface energy
parameter 4 = ¢/g does not affect the flexural behavior of the gradient elastic beam. For ¢ - d > 0.05, the
deflection increases as the surface energy parameter A = £/g increases.

As a second case, the non-classical boundary conditions are assumed to be «”(L) = u"”(0) = 0 for the
case of A =0and u”(L) = u"(0) + g*u"”(0) = 0 for the case of . # 0. Use of the above boundary conditions
in conjunction with a particular solution u, = —(¢/24EI)x*, enable one to determine the constants ¢;—c¢ of
the homogeneous part of the solution u;, given by Eq. (40). They are

1> L3(c-d)*
¢ = qL/6EI, ¢ = f%(z( AP, o= u
qlc-d)’L* 1 1
Cyq ( i sec i c-d+sin v (43)
(L) FArede s cd+elled
<= El/|c-d(1+e¥d) |’ 1 + e2/(cd)

for the case of A =0, and
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Fig. 2. (a) Displacement distribution #(&) of a beam in bending for various values of ¢ - d. The classical boundary conditions are
u(0) =4/'(0) =0 and M(L) = V(L) = 0 and the non-classical ones u”(0) = u"’(L) = 0. (b) Displacement distribution #(¢) of a beam in
bending for various values of 1 = ¢/g and ¢ - d = 0.05. The classical boundary conditions are u(0) =«'(0) =0 and M(L) =V (L) =0
and the non-classical ones u”(0) = ¢u" (L) + g*u” (L) = 0. (c) Displacement distribution #(&) of a beam in bending for various values of
A and c¢-d=0.1. The classical boundary conditions are u(0) =u'(0) =0 and M(L)=V(L) =0 and the non-classical ones
u/r(o) — éu”( ) Jrgzu///( ) = 0.

qL?

¢1 =qL/6EI, ¢, = —E(Z( ) 1),

~ (q(c-a)L’ —2(c-d)* 2+ [+ 2(c- d)(=1+ (c-d)A)]cosh ()
c3_< ) —2cosh (L) + 24sinh () ’

[ aqlc- d —2(c- d + [A+2(c-d)(—=1+ (c-d)Z )]Sinh(ﬁ)
“= 2[cosh (L) — Zsinh (L)] 7 (44)
c:(i) —i+2(c-d)(1+ (c-d)e/ (=1 + 1) — (c-d)2)

> \E 2c-d)(— 1 +eXCd(—1+2)— 1) ’

g [N = 2e a1 4 2) + (e d)(=1 + (e d)7) + 2)ete )]

o (E) 2c-d)(— 1 +eed(—1 + 1) — 1)
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Fig. 3. (a) Displacement distribution #(&) of a beam in bending for various values of ¢ - d. The classical boundary conditions are
u(0) =4/(0) = 0 and M(L) = V(L) = 0 and the non-classical ones u”(L) = " (0) = 0. (b) Displacement distribution #(¢) of a beam in
bending for various values of 2 and ¢ - d = 0.05. The classical boundary conditions are u(0) = #/(0) = 0 and M(L) = V(L) = 0 and the
non-classical ones u”(L) = " (0) + g*«”(0) = 0. (c) Displacement distribution #(¢) of a beam in bending for various values of 4 and
¢-d=0.1. The classical boundary conditions are u(0) =#'(0) =0 and M(L)=V(L) =0 and the non-classical ones u"(L) =
" (0) + g% (0) = 0.

for the case of A # 0.

Fig. 3(a) shows the variation of the beam deflection u(¢) versus ¢ for various values of the gradient
coefficient product ¢-d = (g/D) - (D/L) including the value ¢ -d = 0, which corresponds to the classical
elastic case. Fig. 3(a) shows that the deflection of the gradient beam without surface energy decreases as the
product ¢ -d increases. Figs. 3(b) and (c) show the variation of the beam deflection #(¢) versus ¢ for
various values of the surface energy parameter A =/¢/g and with gradient coefficient product being
c-d=0.05 and c¢-d = 0.1, respectively. The obtained results demonstrate that for large values of the
product ¢ - d (c - d > 0.05) the surface energy parameter A = £/g does not affect the flexural behavior of the
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gradient elastic beam. For ¢-d <0.05 the deflection increases as the surface energy parameter 1 =/¢/g
increases.

The above results on beam bending are in agreement with those of the Cosserat (micropolar elasticity)
theory (Krishna Reddy and Venkatasubramanian, 1978; Lakes, 1983, 1986, 1995; Anderson and Lakes,
1994) for the case of zero surface energy. Thus non-classical flexural rigidity is always greater than the
classical one for both theories. However, while in the present case increase of the beam slenderness results in
a decrease of the flexural rigidity, the opposite happens in the case of Cosserat’s theory (Krishna Reddy and
Venkatasubramanian, 1978; Lakes, 1983, 1986, 1995; Anderson and Lakes, 1994).

7. Solution of boundary value problems for buckling

Consider a simply supported beam under the action of an axial compressive force P. The governing
equation of a beam in buckling is given by

El(u" — gu") + P/ =0 (45)
The solution of Eq. (45) is of the form

u = c1x + ¢ + ¢y sin &x + ¢4 cos Ex + ¢5 sinh Ox + ¢ cosh Ox (46)

where

e= (1) Ve are )i aearve -
0= (1/W> \/1 + /1 +4(c-d)’L2k2 (47)

kK* = P/EI

and c;—cg are constants of integration to be determined from the boundary conditions of the problem.

The classical boundary conditions are #(0) = u(L) = 0 and M(0) = M (L) = 0 implying, the first two that
du(0) = du(L) = 0 and the second two, on account of Eq. (36), that «”(0) — g*u'V(0) = " (L) — g*u"V (L) = 0.
Thus, Egs. (36), » are satisfied. The non-classical boundary conditions are assumed to be v”(0) = v"(L) = 0,
which satisfy Eq. (36); and further imply that »!V(0) = u'V(L) = 0 for the case of 1 = 0.

Thus, the boundary conditions of the problem are u(0) = u(L) =0, u”(0) =u"(L) =0 and «'V(0) =
uV(L) = 0 and serve to determine the constants c;—cs of Eq. (46). Indeed one easily finds that ¢; = ¢, =
¢y = ¢5s = ¢ = 0, the buckling shape has the form

u(x) = ¢ sin &x (48)
i.e. the same as in the classical case and the buckling condition reads
sinéL =0 (49)

Eq. (49) is satisfied for L = nn (n = 1,2,...) and in view of Eq. (47); one can obtain the first critical load
for n =1 in the form

Py = (EI/4(c-d)’LY)[(1 + 2(c - d)*n?)* — 1] (50)
This expression for ¢ - d = 0 reduces through a limiting process to

P’ = ’EI/1? (51)
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Fig. 4. Variation of the dimensionless buckling load P, /P’ of the gradient case as a function of (c- d)znz. The classical boundary
conditions are u(0) = u(L) = 0 and M(0) = M(L) = 0 and the non-classical ones u"(0) = "(L) = 0.

which is the critical (buckling) load of the classical case. Fig. 4 depicts the variation of the ratio
Py/P’ =1+ (c-d)’n* as a function of the gradient term (c - d)*n%, where ¢-d = (g/D) - (D/L). It is ap-
parent that the buckling load increases for increasing values of the gradient coefficient product ¢ - d with the
classical elastic critical load being a lower bound.

For the second case, the classical boundary conditions are u(0) = u(L) = 0 and M(0) = M(L) = 0 im-
plying, the first two that 5u(0) = du(L) = 0 and the second two that «”(0) — g?u'v (0) = v"(L) — g*u™ (L) = 0.
Thus, Eqgs. (36),, are satisfied. The non-classical boundary conditions which satisfy Eq. (36);, are assumed
to be u”(0) = " (L) = 0 for the case of A =0 and (u"(0) + g*u"(0) = ¢u" (L) + g*u" (L) = 0 for the case of
A#0.

In order to have a non-trivial solution, the determinant of the coefficient matrix of the unknowns c;—cs
should satisfy the following condition

ap app ai aag

ay) Ay Ay dxg

det = =0 (52)
as; dszx  asz  dx
asr A4 443 A4
where
ap =ay = ajs = ay; =0
ayn = —637 aiy = 037 dy = —(C . d)L454 — éz, dyy = —(C . d)L404 + 02
az = —&cos(EL), apn = Esin(éL), as; = 0° cosh(0L), a4 = 0 sinh(0L) (53)

ay = —(&+ (c-d)PL*EYsin(EL),  asn = —(& + (c- d)*L*EY) cos(EL),
ag = (0> — (c-d)’L*0*)sinh(0L), awy = (0> — (c - d)*L*0*) cosh(0L)
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for the case of 1 =0, and
ay = ap = 0, ap = 7(52 + (C . d)2L4é4), ay = 92 — (C . d)2L404,
an = —(E + (c-d)’ L sin(EL),  ayn = —(E + (¢ - d)’L*E*) cos(EL),
ay = (0 — (c-d)’L*0*)sinh(0L), ax = (6*> — (c - d)*L*0*) cosh(OL),
ay = —(c-d)’L’E, anp=—ic - d)L&, ay=(c-d)’L*0’, ay=i(c d)LO,
ay = —A(c-d)LE sin(EL) — (¢ - d)’L3E cos(EL),  asm = —A(c - d)LE cos(EL) + (¢ - d)*L*E sin(EL),
as = A(c - d)LO*sinh(OL) + (c - d)*L30° cosh(OL),  as = A(c - d)LO? cosh(OL) + (c - d)*L*0° sinh(0L)
for the case of 1 #£ 0.

(54)
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Fig. 5. (a) Variation of the dimensionless buckling load P /P of the gradient case as a function of (c - d)*. The classical boundary
conditions are u(0) = u(L) = 0 and M(0) = M(L) = 0 and the non-classical ones «”(0) = (L) = 0. (b) Variation of the dimensionless
buckling load P../P’, of the gradient case as a function of (c - d)* and / = 0.2. The classical boundary conditions are u(0) = u(L) = 0
and M(0) = M (L) = 0 and the non-classical ones fu”(0) + g*u" (0) = u"(L) + g*u" (L) = 0. (c) Variation of the dimensionless buckling
load of the gradient case as a function of 1 and ¢-d =0.1. The classical boundary conditions are u(0) =u(L) =0 and
M (0) = M(L) = 0 and the non-classical ones ¢u”(0) + g% (0) = " (L) + g*u" (L) = 0.
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Fig. 5(a) depicts the variation of the ratio P, /P as a function of the gradient coefficient product (c - d)
and 4 = 0. It is apparent that the buckling load increases for increasing values of the gradient coefficient
product ¢ - d. Fig. 5(b) shows the variation of the ratio P, /P) as a function of the gradient coefficient
product (c - a’)2 and the surface energy parameter 2 = 0.2. Fig. 5(c) shows the variation of the ratio P./P.
as a function of the surface energy parameter A and the gradient coefficient product ¢-d = 0.1. It is ob-
served that the surface energy effect is negligible and that for some other non-classical boundary conditions
the normalized critical load versus normalized gradient coefficient relation may be slightly non-linear.

8. Conclusions
On the basis of the preceding discussion, the following conclusions can be stated:

(i) Using a simple theory of gradient elasticity with surface energy, the governing equations of beam bend-
ing and buckling and the corresponding boundary conditions (classical and non-classical) have been
derived.

(i) The boundary conditions have been derived from a variational statement constructed either directly or
indirectly with the aid of the method of weighted residuals. The latter approach does not require any
knowledge of the strain energy, which is obtained here as a byproduct.

(iii) A characteristic boundary value problem of beam in bending has been solved and its gradient elastic
solution for the beam deflection has been found to decrease (but not very significantly) for increasing
values of the gradient coefficient ¢ - d with the classical elastic solution being an upper bound. On
the other hand the surface energy effect has been found to be rather small, dependent on the non-
classical boundary conditions and to lead to either increasing or decreasing displacements depending
on the value of the gradient coefficient.

(iv) A characteristic boundary value problem of beam buckling has been solved and its gradient elastic so-
lution for the critical (buckling) load has been found to increase for increasing values of the gradient
coefficient with the classical elastic critical load being a lower bound. The surface energy effect has been
found to be insignificant.
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