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Abstract

The problems of bending and stability of Bernoulli–Euler beams are solved analytically on the basis of a simple linear

theory of gradient elasticity with surface energy. The governing equations of equilibrium are obtained by both a

combination of the basic equations and a variational statement. The additional boundary conditions are obtained by

both variational and weighted residual approaches. Two boundary value problems (one for bending and one for

stability) are solved and the gradient elasticity effect on the beam bending response and its critical (buckling) load is

assessed for both cases. It is found that beam deflections decrease and buckling load increases for increasing values of

the gradient coefficient, while the surface energy effect is small and insignificant for bending and buckling, respectively.
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Keywords: Microstructural effects; Gradient elasticity; Surface energy; Bending of beams; Stability of beams; Variational principle;

Non-classical boundary conditions

1. Introduction

The mechanical behavior of linear elastic materials with microstructure, such as polymers, polycrystals

or granular materials, cannot be described adequately by the classical theory of linear elasticity, which is

associated with the concepts of homogeneity and locality of stress. When the material exhibits a non-

homogeneous behavior, microstructural effects are important and the state of stress has to be defined in a

non-local manner. These microstructural effects can be successfully modeled in a macroscopic manner by

employing higher-order gradient, micropolar and couple stress theories. For a literature review on the
subject of these theories one can consult the review articles of Tiersten and Bleustein (1974) and Ex-

adaktylos and Vardoulakis (2001), the book of Vardoulakis and Sulem (1995) and the literature review in

the recent paper by Tsepoura et al. (2002).

These theories, usually in simplified forms, have been used during the last fifteen years or so to suc-

cessfully solve various boundary value problems of static and dynamic linear elasticity. Thus, it has been
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found that singularities or discontinuities of classical elasticity theory disappear, size effects are easily

captured and wave dispersion effects are observed in cases where this was not possible in classical elasticity

(e.g. Tiersten and Bleustein, 1974; Exadaktylos and Vardoulakis, 2001; Vardoulakis and Sulem, 1995;

Tsepoura et al., 2002; Altan and Aifantis, 1992; Ru and Aifantis, 1993; Altan et al., 1996; Exadaktylos et al.,
1996; Chang and Gao, 1997; Georgiadis and Vardoulakis, 1998).

In this paper the problems of bending and buckling of Bernoulli–Euler beams are solved analytically on

the basis of a simple theory of gradient elasticity with surface energy. The governing equations of equi-

librium for both bending and buckling problems are derived both by combining the corresponding basic

equations and by using a variational statement. All possible boundary conditions (classical and non-

classical) are obtained with the aid of a variational statement constructed by both the establishment of an

expression for the strain energy and the use of the method of weighted residuals. In addition, boundary

value problems of bending and buckling of beams are solved analytically and the gradient effect on the
response of the beam or its critical (buckling) load is assessed.

The problem of bending of beams has been studied by non-classical theories of elasticity mainly in order

to explain test results, which could not be explained by classical elasticity theory. Thus, Krishna Reddy and

Venkatasubramanian (1978) determined analytically the flexural rigidity of circular cylindrical beams of

Cosserat (micropolar elastic) material, while Lakes (1983, 1986, 1995) and Anderson and Lakes (1994)

investigated the dependence of the flexural rigidity of rods, made of various polymeric foams, upon

specimen size both experimentally and by using the Cosserat (micropolar elasticity) theory. Vardoulakis

et al. (1998) studied the effect of the beam length on the failure load and the variation of the beam curvature
along the beam length both experimentally and on the basis of a gradient theory with surface energy for

Timoshenko beams in flexure. Tsagrakis (2001) briefly considered the case of pure bending of elastic

Bernoulli–Euler rods and verified the test results of Lakes (1983, 1986) by using the simple gradient elas-

ticity theory of Aifantis and coworkers (1992, 1993) and a gradient elasticity theory with surface energy.

Thus, the present paper presents a more systematic and general treatment of bending of beams than in

Lakes (1983, 1986, 1995), Anderson and Lakes (1994), Vardoulakis et al. (1998), Tsagrakis (2001) and in

addition considers buckling of beams.

2. Governing equation and boundary conditions for bending by basic equations and a variational principle

Consider a straight prismatic beam, which is subjected to a static lateral load qðxÞ distributed along the

longitudinal axis x of the beam, as shown in Fig. 1. Thus the loading plane coincides with the yx plane. The
cross-section of the beam A is characterized by the two axes y and z with the former one being its axis of

symmetry.
In this work the simple gradient elasticity theory with surface energy due to Vardoulakis and Sulem

(1995) is employed. This theory combines the general concepts, ideas and structure of Mindlin�s (1964)

theory with Casal�s (1972) concept on surface energy effects and is associated with only four elastic con-

Fig. 1. Geometry and loading of a prismatic beam in bending.
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stants (two classical and two non-classical) instead of the 18 elastic constants (including the two classical

ones) of Mindlin�s (1964) theory. Thus, the present theory of Vardoulakis and Sulem (1995), because of its

simplicity is much more convenient in applications than Mindlin�s (1964) gradient elasticity theory with 18

elastic constants and the Cosserat and Cosserat (1909) or the micropolar elasticity theory of Eringen (1966)
with six elastic constants. Thus, on the basis of the simple theory of gradient elasticity with surface energy

(Vardoulakis and Sulem, 1995), one has for the one-dimensional case that the Cauchy and double stresses

as well as the total stresses sx, lx and rx, respectively, are given for the case of beam bending by the

constitutive relations

sx ¼ Eex þ ‘Ee0x ð1Þ

lx ¼ ‘Eex þ g2Ee0x ð2Þ

rx ¼ sx �
dlx

dx
¼ E ex

�
� g2

d2ex
dx2

�
¼ Eðex � g2e00xÞ ð3Þ

where ex represents the axial strain of the beam in bending, the constants ‘ and g2 represent material lengths

related to surface and volumetric elastic strain energy, respectively, E is the Young�s modulus and primes

indicate differentiation with respect to x. Since the strain energy is positive definite, the material lengths g2

and ‘ are restricted, such that (Vardoulakis and Sulem, 1995), 0 < ‘ < g2.
Conditions of equilibrium require that the resultant of the internal forces on the cross-section should be

zero, and their moment equal to the bending moment M . ThusZ
A

rx dA ¼ 0 ð4Þ

Z
A

rxy dA ¼ �M ð5Þ

with

dM
dx

¼ V ;
dV
dx

¼ �qðxÞ ð6Þ

where V represents shear forces.

In view of Eq. (3) and according to Bernoulli–Euler hypothesis (Timoshenko and Goodier, 1970) that

ex ¼ ky, with k denoting the curvature along the x-direction, Eqs. (4) and (5) take the form

E k
�

� g2
d2k
dx2

�Z
A
y dA ¼ 0 ð7Þ

E k
�

� g2
d2k
dx2

�Z
A
y2 dA ¼ �M ð8Þ

Eqs. (7) and (8) are both satisfied for
R
A y dA ¼ 0, indicating that the x-axis is a centroidal one, and

k � g2
d2k
dx2

¼ �M
EI

ð9Þ

where I ¼
R
A y

2 dA stands for the moment of inertia about the z-axis of the beam.

S. Papargyri-Beskou et al. / International Journal of Solids and Structures 40 (2003) 385–400 387



Utilizing the Bernoulli–Euler�s assumption (Timoshenko and Goodier, 1970) that

k ¼ � d2u
dx2

ð10Þ

and Eqs. (6) and (10), Eq. (9) results in the governing equation of beam in bending

d2M
dx2

¼ EIðuIV � g2uVIÞ ¼ �qðxÞ

or

EIðuIV � g2uVIÞ þ qðxÞ ¼ 0 ð11Þ
In this section, the governing equation of equilibrium of a gradient elastic beam in bending as well as the

corresponding boundary conditions are also determined by means of a variational principle. Consider again

the straight prismatic Bernoulli–Euler beam of Fig. 1. On the basis of the aforementioned Bernoulli–Euler

assumptions, the equation of equilibrium of the gradient elastic beam in bending as well as all possible

boundary conditions can be determined with the aid of the variational principle

dðU � W Þ ¼ 0 ð12Þ
where U is the strain energy, W is the total work done by external forces and d indicates variation. Ac-

cording to the one-dimensional gradient elasticity theory with surface energy (Vardoulakis and Sulem,

1995), the strain energy of a beam in bending is defined as

U ¼ 1

2

Z
A

Z L

0

½sx � ex þ lx � rex
dxdA ð13Þ

where ex ¼ �yu00 represents the axial strain of the beam,rex ¼ dex=dx ¼ �yu000 stands for the strain gradient

and sx and lx denote the Cauchy and double stresses given by Eqs. (1) and (2), respectively.

Substituting Eqs. (1) and (2) into Eq. (13) one obtains the following expression for the strain energy

U ¼ 1

2

Z L

0

EI ½ðu00Þ2 þ g2ðu000Þ2 þ 2‘u00u000
dx ð14Þ

According to the calculus of variations, the variation of an integral of the type U ¼
R L
0
F ðu00; u000Þdx, is

obtained through the well-known relation (Lanczos, 1970)

dU ¼
Z L

0

d2

dx2
oF
ou00

� ��
� d3

dx3
oF
ou000

� ��
dudxþ

��
� d

dx
oF
ou00

� �
þ d2

dx2
oF
ou000

� ��
du
�L
0

þ oF
ou00

��
� d

dx
oF
ou000

� ��
du0
�L
0

þ oF
ou000

du00
� �L

0

ð15Þ

where, for the present case, the Lagrangian function F is

F ¼ EI
2

ðu00Þ2
h

þ g2ðu000Þ2 þ 2‘u00u000
i

ð16Þ

Eqs. (15) and (16) help to express the variation of the strain energy of the beam as

dU ¼
Z L

0

EIðuIV � g2uVIÞdudxþ ½EIðg2uV � u000Þdu
L0 þ ½EIðu00 � g2uIVÞdu0
L0 þ ½EIð‘u00 þ g2u000Þdu00
L0

ð17Þ
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On the other hand, the variation of the work done by the external force qðxÞ, the boundary shear force V
and the boundary classical and non-classical (double) bending moments M and m, respectively, reads

dW ¼ �
Z L

0

qdudx� ½V du
L0 þ ½M du0
L0 þ ½mdu00
L0 ð18Þ

In view of Eqs. (17) and (18), the variational equation (12) takes the form

dðU � W Þ ¼
Z L

0

½EIðuIV � g2uVIÞ þ q
dudxþ ½fV � EIðu000 � g2uVÞgdu
L0

� ½fM � EIðu00 � g2uIVÞgdu0
L0 � ½fm� EIð‘u00 þ g2u000Þgdu00
L0 ¼ 0 ð19Þ

The above variational equation implies that each term of Eq. (19) must be equal to zero. Thus, the

governing equation of the beam in bending is given by

EIðuIV � g2uVIÞ þ qðxÞ ¼ 0 ð20Þ

which is the same as Eq. (11) derived with the aid of the basic equations, while the boundary conditions
satisfy the equations

½V ðLÞ � EI ½u000ðLÞ � g2uVðLÞ

duðLÞ � ½V ð0Þ � EI ½u000ð0Þ � g2uVð0Þ

duð0Þ ¼ 0

½MðLÞ � EI ½u00ðLÞ � g2uIVðLÞ

du0ðLÞ � ½Mð0Þ � EI ½u00ð0Þ � g2uIVð0Þ

du0ð0Þ ¼ 0

½mðLÞ � EI ½‘u00ðLÞ þ g2u000ðLÞ

du00ðLÞ � ½mð0Þ � EI ½‘u00ð0Þ þ g2u000ð0Þ

du00ð0Þ ¼ 0

ð21Þ

For example, if one assumes the four classical boundary conditions to be uð0Þ, uðLÞ, u0ð0Þ and u0ðLÞ pre-
scribed and the corresponding non-classical ones to be u00ð0Þ and u00ðLÞ prescribed, then duð0Þ ¼ duðLÞ ¼ 0,

du0ð0Þ ¼ du0ðLÞ ¼ 0, du00ð0Þ ¼ du00ðLÞ ¼ 0 and Eqs. (21) are all satisfied. In view of Eqs. (21) one can observe

that, when dealing with the classical boundary conditions, either the deflection u or the shear forces

V 
 EIðu000 � g2uVÞ and the strain u0 or the bending moments M 
 EIðu00 � g2uIVÞ at the boundary of the

beam have to be specified. For the case of the non-classical or additional boundary conditions, one has to

specify either the boundary strain gradient u00 or the boundary double moments m 
 EIð‘u00 þ g2u000Þ.

3. Boundary conditions for bending through weighted residuals

In case where the equation of equilibrium or the equation of motion of a boundary value problem is

known, then all possible boundary conditions of the problem can be also determined with the aid of the
method of weighted residuals. This approach is particularly convenient in cases where an expression for the

strain energy is not known or difficult to obtain. In this section, the boundary conditions corresponding to

bending of a gradient elastic beam are determined by means of weighted residuals.

The lateral beam deflection uðxÞ obeys the governing Eq. (11). Thus, according to the method of

weighted residuals, one has the weak statementZ L

0

ðEIuIV � g2EIuVI þ qÞwdx ¼ 0 ð22Þ

where w ¼ wðxÞ is a weighting function. Integrating Eq. (22) by parts two and three times for uIV and uVI,
respectively, one has
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Z L

0

uIVwdx ¼ ½u000w� u00w0
L0 þ
Z L

0

u00w00 dxZ L

0

uVIwdx ¼ ½uVw� uIVw0 þ u000w00
L0 �
Z L

0

u000w000 dx

ð23Þ

Assuming that w ¼ du, where d indicates variation, one obtains from Eqs. (22) and (23)

Z L

0

ðEIuIV � g2EIuVI þ qÞdudx ¼ EI ½u000 du� u00 du0
L0 � g2EI ½uV du� uIV du0 þ u000 du00
L0 þ EI
Z L

0

u00 du00 dx

þ g2EI
Z L

0

u000 du000 dx�
Z L

0

qdudx

or

EI
2

d
Z L

0

½ðu00Þ2 þ g2ðu000Þ2 þ qu
dx ¼
Z L

0

ðEIuIV � g2EIuVI þ qÞdudxþ EI ½ðu00 � g2uIVÞdu0
L0

� EI ½ðu000 � g2uVÞdu
L0 þ EI ½g2u000 du00
L0 ð24Þ

Taking into account that the strain energy stored by the gradient elastic beam is that of Eq. (14), Eq. (24)

leads to the expression

EI
2

d
Z L

0

½ðu00Þ2 þ g2ðu000Þ2 þ 2‘u00u000 þ qu
dx ¼
Z L

0

ðEIuIV � g2EIuVI þ qÞdudxþ EI ½ðu00 � g2uIVÞdu0
L0

� EI ½ðu000 � g2uVÞdu
L0 þ EI ½ð‘u00 þ g2u000Þdu00
L0

or

dU ¼
Z L

0

ðEIuIV � g2EIuVI þ qÞdudxþ EI ½ðu00 � g2uIVÞdu0
L0 � EI ½ðu000 � g2uVÞdu
L0

þ EI ½ð‘u00 þ g2u000Þdu00
L0 ð25Þ

In view of Eqs. (22) and (25), the following variational statement is implied:

dU ¼ �EI ½ðu000 � g2uVÞdu
L0 þ EI ½ðu00 � g2uIVÞdu0
L0 þ EI ½ð‘u00 þ g2u000Þdu00
L0 ð26Þ

However, according to Eqs. (12) and (18), the presence of the boundary shear as well as the boundary

classical and non-classical (double) moments transform the above relation to the equivalent one

½fV � EIðu000 � g2uVÞgdu
L0 � ½fM � EIðu00 � g2uIVÞgdu0
L0 � ½fm� EIð‘u00 þ g2u000Þgdu00
L0 ¼ 0 ð27Þ

Thus it is apparent from Eq. (27) that the boundary conditions satisfy the equations

½V ðLÞ � EI ½u000ðLÞ � g2uVðLÞ

duðLÞ � ½V ð0Þ � EI ½u000ð0Þ � g2uVð0Þ

duð0Þ ¼ 0

½MðLÞ � EI ½u00ðLÞ � g2uIVðLÞ

du0ðLÞ � ½Mð0Þ � EI ½u00ð0Þ � g2uIVð0Þ

du0ð0Þ ¼ 0

½mðLÞ � EI ½‘u00ðLÞ þ g2u000ðLÞ

du00ðLÞ � ½mð0Þ � EI ½‘u00ð0Þ þ g2u000ð0Þ

du00ð0Þ ¼ 0

ð28Þ

which, as it is expected, are identical to Eqs. (21).
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4. Governing equations and boundary conditions for buckling by a variational principle

In this section, the governing equation of equilibrium of a beam in buckling as well as the corresponding

boundary conditions are determined by means of a variational principle. Consider the beam of the previous
section without lateral load subjected to an axial compressive force P , which can cause flexural buckling for

a certain value of P called elastic buckling load or critical load Pcr to be determined. The governing equation

of a beam in buckling as well as all possible boundary conditions can be determined with the aid of a

variational principle, which reads as in Eq. (12). The strain energy of the gradient elastic beam in bending is

defined by Eq. (14). Considering in addition the effect of the axial compressive force P , one obtains the

following expression for the strain energy:

U ¼ 1

2

Z L

0

EI ½ðu00Þ2 þ g2ðu000Þ2 þ 2‘u00u000
dx� 1

2

Z L

0

P ðu0Þ2 dx ð29Þ

According to the calculus of variations, the variation of an integral of the type U ¼
R L
0
F ðu0; u00; u000Þdx is

obtained through the well-known relation (Lanczos, 1970)

dU ¼
Z L

0

�
� d

dx
oF
ou0

� �
þ d2

dx2
oF
ou00

� �
� d3

dx3
oF
ou000

� ��
dudxþ oF

ou0

��
� d

dx
oF
ou00

� �
þ d2

dx2
oF
ou000

� ��
du
�L
0

þ oF
ou00

��
� d

dx
oF
ou000

� ��
du0
�L
0

þ oF
ou000

du00
� �L

0

ð30Þ

where, for the present case, the Lagrangian function F is

F ¼ EI
2
½ðu00Þ2 þ g2ðu000Þ2 þ 2‘u00u000
 � P

2
ðu0Þ2 ð31Þ

Eqs. (30) and (31) help to express the variation of the strain energy of the beam as

dU ¼
Z L

0

½EIðuIV � g2uVIÞ þ Pu00
dudx� ½½Pu0 þ EIðu000 � g2uVÞ
du
L0 þ ½EIðu00 � g2uIVÞdu0
L0

þ ½EIð‘u00 þ g2u000Þdu00
L0 ð32Þ

On the other hand, the variation of the work done by the external force P , the boundary shear force V as
well as the boundary classical and non-classical (double) moments M and m, respectively, reads

dW ¼ �
Z L

0

P dudx� ½V du
L0 þ ½M du0
L0 þ ½mdu00
L0 ð33Þ

In view of Eqs. (32) and (33), the variational equation (12) takes the form

dðU � W Þ ¼
Z L

0

½EIðuIV � g2uVIÞ þ Pu00
dudxþ ½fV � ½Pu0 þ EIðu000 � g2uVÞ
gdu
L0

� ½fM � EIðu00 � g2uIVÞgdu0
L0 � ½fm� EIð‘u00 þ g2u000Þgdu00
L0 ¼ 0 ð34Þ

The above variational equation implies that each term of Eq. (34) must be equal to zero. Thus, the gov-

erning equation of the beam in buckling is given by

EIðuIV � g2uVIÞ þ Pu00 ¼ 0 ð35Þ
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while the boundary conditions satisfy the equations

½V ðLÞ � ½Pu0ðLÞ þ EI½u000ðLÞ � g2uVðLÞ


duðLÞ � ½V ð0Þ � ½Pu0ð0Þ þ EI ½u000ð0Þ � g2uVð0Þ


duð0Þ ¼ 0

½MðLÞ � EI ½u00ðLÞ � g2uIVðLÞ

du0ðLÞ � ½Mð0Þ � EI ½u00ð0Þ � g2uIVð0Þ

du0ð0Þ ¼ 0

½mðLÞ � EI ½‘u00ðLÞ þ g2u000ðLÞ

du00ðLÞ � ½mð0Þ � EI½‘u00ð0Þ þ g2u000ð0Þ

du00ð0Þ ¼ 0

ð36Þ

5. Governing equations and boundary conditions for buckling by basic equations and weighted residuals

The governing equation for a beam in buckling (Eq. (35)) can be easily obtained with the aid of the basic

equations of the problem. Thus one has simply to augment the bending Eq. (20) with q ¼ 0 with the effect of

the axial compressive force P reading Pu00.
In case where the governing equation of the beam in buckling is known, all possible boundary conditions

can also be determined with the aid of the method of weighted residuals.

According to the method of weighted residuals, one has the weak statement

Z L

0

ðEIuIV � g2EIuVI þ Pu00Þwdx ¼ 0 ð37Þ

The first two terms of the integrand of Eq. (37) are treated in the same way as in Section 3 (Eq. (22)). The

third term is integrated by parts once. On the assumption that w ¼ du and taking into account Eqs. (12),

(18) and (37), the following variational statement is implied:

½fV � ½Pu0 þ EIðu000 � g2uVÞ
gdu
L0 � ½fM � EIðu00 � g2uIVÞgdu0
L0 � ½fm� EIð‘u00 þ g2u000Þgdu00
L0 ¼ 0

ð38Þ

Eq. (38) leads to the boundary conditions that, as in the case of the variational principle approach, satisfy
Eq. (36).

6. Solution of boundary value problems in bending

This section deals with the solution of a boundary value problem for bending. Consider a cantilever

beam of length L with its built-in end at x ¼ 0, subjected to a static uniformly distributed lateral load q. As

it is shown in Section 2, the deflection uðxÞ of the beam in bending satisfies Eq. (20) or

EIðuIV � g2uVIÞ ¼ �qðxÞ ð39Þ

The solution of Eq. (39) is the sum of the solution of its homogeneous part, i.e., the one with q ¼ 0, and a

particular solution of Eq. (39). The former part of the solution is

uh ¼ c1x3 þ c2x2 þ c3xþ c4 þ c5g4 sinhðx=gÞ þ c6g4 coshðx=gÞ ð40Þ

The classical boundary conditions are uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0 implying, the first two that

duð0Þ ¼ du0ð0Þ ¼ 0, and the second two that u00ðLÞ � g2uIVðLÞ ¼ u000ðLÞ � g2uVðLÞ ¼ 0. Thus, Eqs. (23)1;2 are

satisfied. The non-classical boundary conditions are assumed to be u00ð0Þ ¼ u000ðLÞ ¼ 0 in case of ‘ ¼ 0 and

u00ð0Þ ¼ ½‘u00ðLÞ þ g2u000ðLÞ
 ¼ 0 in case of taking into account the surface energy terms (‘ 6¼ 0). Use of the
above boundary conditions in conjunction with a particular solution up ¼ �ðq=24EIÞx4, enable one to

determine the constants c1–c6 of the homogeneous part of the solution uh given by Eq. (40). They are
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c1 ¼ qL=6EI ; c2 ¼ � qL2

4EI
ð2ðc � dÞ2 þ 1Þ; c3 ¼

qc � d
2EI

� �
L3ð2ðc � dÞ2 þ 1Þ tanh 1

c � d

� �
;

c4 ¼ � qðc � dÞ2

2EI

 !
L4ð2ðc � dÞ2 þ 1Þ; c5 ¼ � q

4EI

� �
2

 
þ 1

ðc � dÞ2

!�
� 1þ tanh

L
g

� ��
;

c6 ¼
q

4EI

� �
2

 
þ 1

ðc � dÞ2

!
1

�
þ tanh

L
g

� ��
ð41Þ

for the case of k ¼ L=g ¼ 0, and

c1 ¼ qL=6EI ; c2 ¼ � qL2

4EI
ð2ðc � dÞ2 þ 1Þ;

c3 ¼
qL3

2EI

� �
ðc � dÞ

�2ðc � dÞ2k þ kð2ðc � dÞ2 þ 1Þ cosh 1
c�d

 �

þ ð2ðc � dÞ2 þ 1Þ sinh 1
c�d

 �

cosh 1
c�d

 �

þ k sinh 1
c�d

 �

" #
;

c4 ¼ � qðc � dÞ2L4

2EI

 !
ð2ðc � dÞ2 þ 1Þ;

c5 ¼
q

2EI

� � 1� k þ 2ðc � dÞ2 1þ � 1þ e1=ðc�dÞ

 �

k

 �

ðc � dÞ2 1� k þ e2=ðc�dÞð1þ kÞð Þ

" #
;

c6 ¼
q

2EI

� � e1=ðc�dÞ � 2ðc � dÞ2k þ e1=ðc�dÞð1þ kÞð2ðc � dÞ2 þ 1Þ
� �

ðc � dÞ2 1� k þ e1=ðc�dÞð1þ kÞð Þ

2
4

3
5

ð42Þ

for the case of k ¼ L=g 6¼ 0.

Fig. 2(a) shows the variation of the beam deflection �uuðnÞ along the dimensionless distance n ¼ x=L for

various values of the gradient coefficient product c � d ¼ ðg=DÞ � ðD=LÞ, where D is a characteristic diameter
of the microstructure. The value c � d ¼ 0 corresponds to the classical elastic case. Fig. 2(a) shows that the

deflection of the gradient beam without surface energy decreases as the product c � d increases. Figs. 2(b)

and (c) show the variation of the beam deflection �uuðnÞ along the n for various values of the surface energy

parameter k ¼ ‘=g and with the gradient coefficient product being c � d ¼ 0:05 and c � d ¼ 0:1, respectively.
The obtained results demonstrate that for small values of the product c � d ðc � d 6 0:05Þ, the surface energy
parameter k ¼ ‘=g does not affect the flexural behavior of the gradient elastic beam. For c � d > 0:05, the
deflection increases as the surface energy parameter k ¼ ‘=g increases.

As a second case, the non-classical boundary conditions are assumed to be u00ðLÞ ¼ u000ð0Þ ¼ 0 for the
case of k ¼ 0 and u00ðLÞ ¼ ‘u00ð0Þ þ g2u000ð0Þ ¼ 0 for the case of k 6¼ 0. Use of the above boundary conditions

in conjunction with a particular solution up ¼ �ðq=24EIÞx4, enable one to determine the constants c1–c6 of
the homogeneous part of the solution uh given by Eq. (40). They are

c1 ¼ qL=6EI ; c2 ¼ � qL2

4EI
ð2ðc � dÞ2 þ 1Þ; c3 ¼

qL3ðc � dÞ2

EI
;

c4 ¼ � qðc � dÞ3L4

EI

 !
sech

1

c � d

� �
c � d
�

þ sinh
1

c � d

� ��
;

c5 ¼ � q
EI

� � �1þ c � de1=ðc�dÞ
c � d 1þ e2=ðc�dÞð Þ

� �
; c6 ¼

q
EI

� � e1=ðc�dÞ

c � d

� �
c � d þ e1=ðc�dÞ

1þ e2=ðc�dÞ

� �
ð43Þ

for the case of k ¼ 0, and
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c1 ¼ qL=6EI ; c2 ¼ � qL2

4EI
ð2ðc � dÞ2 þ 1Þ;

c3 ¼
qðc � dÞL3

EI

� � �2ðc � dÞ2k þ ½k þ 2ðc � dÞð�1þ ðc � dÞkÞ
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 �
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 �

þ 2k sinh 1
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 �
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;
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 �
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 �
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;
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" #
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q
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h i
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2
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ð44Þ

Fig. 2. (a) Displacement distribution �uuðnÞ of a beam in bending for various values of c � d. The classical boundary conditions are

uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0 and the non-classical ones u00ð0Þ ¼ u000ðLÞ ¼ 0. (b) Displacement distribution �uuðnÞ of a beam in

bending for various values of k ¼ ‘=g and c � d ¼ 0:05. The classical boundary conditions are uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0

and the non-classical ones u00ð0Þ ¼ ‘u00ðLÞ þ g2u000ðLÞ ¼ 0. (c) Displacement distribution �uuðnÞ of a beam in bending for various values of

k and c � d ¼ 0:1. The classical boundary conditions are uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0 and the non-classical ones

u00ð0Þ ¼ ‘u00ðLÞ þ g2u000ðLÞ ¼ 0.
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for the case of k 6¼ 0.

Fig. 3(a) shows the variation of the beam deflection �uuðnÞ versus n for various values of the gradient

coefficient product c � d ¼ ðg=DÞ � ðD=LÞ including the value c � d ¼ 0, which corresponds to the classical
elastic case. Fig. 3(a) shows that the deflection of the gradient beam without surface energy decreases as the

product c � d increases. Figs. 3(b) and (c) show the variation of the beam deflection �uuðnÞ versus n for

various values of the surface energy parameter k ¼ ‘=g and with gradient coefficient product being

c � d ¼ 0:05 and c � d ¼ 0:1, respectively. The obtained results demonstrate that for large values of the

product c � d (c � d > 0:05) the surface energy parameter k ¼ ‘=g does not affect the flexural behavior of the

Fig. 3. (a) Displacement distribution �uuðnÞ of a beam in bending for various values of c � d. The classical boundary conditions are

uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0 and the non-classical ones u00ðLÞ ¼ u000ð0Þ ¼ 0. (b) Displacement distribution �uuðnÞ of a beam in

bending for various values of k and c � d ¼ 0:05. The classical boundary conditions are uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0 and the

non-classical ones u00ðLÞ ¼ ‘u00ð0Þ þ g2u000ð0Þ ¼ 0. (c) Displacement distribution �uuðnÞ of a beam in bending for various values of k and

c � d ¼ 0:1. The classical boundary conditions are uð0Þ ¼ u0ð0Þ ¼ 0 and MðLÞ ¼ V ðLÞ ¼ 0 and the non-classical ones u00ðLÞ ¼
‘u00ð0Þ þ g2u000ð0Þ ¼ 0.
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gradient elastic beam. For c � d 6 0:05 the deflection increases as the surface energy parameter k ¼ ‘=g
increases.

The above results on beam bending are in agreement with those of the Cosserat (micropolar elasticity)

theory (Krishna Reddy and Venkatasubramanian, 1978; Lakes, 1983, 1986, 1995; Anderson and Lakes,
1994) for the case of zero surface energy. Thus non-classical flexural rigidity is always greater than the

classical one for both theories. However, while in the present case increase of the beam slenderness results in

a decrease of the flexural rigidity, the opposite happens in the case of Cosserat�s theory (Krishna Reddy and

Venkatasubramanian, 1978; Lakes, 1983, 1986, 1995; Anderson and Lakes, 1994).

7. Solution of boundary value problems for buckling

Consider a simply supported beam under the action of an axial compressive force P . The governing

equation of a beam in buckling is given by

EIðuIV � g2uVIÞ þ Pu00 ¼ 0 ð45Þ

The solution of Eq. (45) is of the form

u ¼ c1xþ c2 þ c3 sin nxþ c4 cos nxþ c5 sinh hxþ c6 cosh hx ð46Þ
where

n ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc � dÞ2L2

q� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðc � dÞ2L2k2

q
� 1

r

h ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc � dÞ2L2

q� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðc � dÞ2L2k2

qr

k2 ¼ P=EI

ð47Þ

and c1–c6 are constants of integration to be determined from the boundary conditions of the problem.

The classical boundary conditions are uð0Þ ¼ uðLÞ ¼ 0 and Mð0Þ ¼ MðLÞ ¼ 0 implying, the first two that

duð0Þ ¼ duðLÞ ¼ 0 and the second two, on account of Eq. (36), that u00ð0Þ � g2uIVð0Þ ¼ u00ðLÞ � g2uIVðLÞ ¼ 0.

Thus, Eqs. (36)1;2 are satisfied. The non-classical boundary conditions are assumed to be u00ð0Þ ¼ u00ðLÞ ¼ 0,
which satisfy Eq. (36)3 and further imply that uIVð0Þ ¼ uIVðLÞ ¼ 0 for the case of k ¼ 0.

Thus, the boundary conditions of the problem are uð0Þ ¼ uðLÞ ¼ 0, u00ð0Þ ¼ u00ðLÞ ¼ 0 and uIVð0Þ ¼
uIVðLÞ ¼ 0 and serve to determine the constants c1–c6 of Eq. (46). Indeed one easily finds that c1 ¼ c2 ¼
c4 ¼ c5 ¼ c6 ¼ 0, the buckling shape has the form

uðxÞ ¼ c3 sin nx ð48Þ
i.e. the same as in the classical case and the buckling condition reads

sin nL ¼ 0 ð49Þ
Eq. (49) is satisfied for nL ¼ np (n ¼ 1; 2; . . .) and in view of Eq. (47)1 one can obtain the first critical load

for n ¼ 1 in the form

Pcr ¼ ðEI=4ðc � dÞ2L2Þ½ð1þ 2ðc � dÞ2p2Þ2 � 1
 ð50Þ
This expression for c � d ¼ 0 reduces through a limiting process to

P 0
cr ¼ p2EI=L2 ð51Þ
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which is the critical (buckling) load of the classical case. Fig. 4 depicts the variation of the ratio

Pcr=P 0
cr ¼ 1þ ðc � dÞ2p2 as a function of the gradient term ðc � dÞ2p2, where c � d ¼ ðg=DÞ � ðD=LÞ. It is ap-

parent that the buckling load increases for increasing values of the gradient coefficient product c � d with the

classical elastic critical load being a lower bound.

For the second case, the classical boundary conditions are uð0Þ ¼ uðLÞ ¼ 0 and Mð0Þ ¼ MðLÞ ¼ 0 im-

plying, the first two that duð0Þ ¼ duðLÞ ¼ 0 and the second two that u00ð0Þ � g2uIVð0Þ ¼ u00ðLÞ � g2uIVðLÞ ¼ 0.

Thus, Eqs. (36)1;2 are satisfied. The non-classical boundary conditions which satisfy Eq. (36)3, are assumed

to be u000ð0Þ ¼ u000ðLÞ ¼ 0 for the case of k ¼ 0 and ‘u00ð0Þ þ g2u000ð0Þ ¼ ‘u00ðLÞ þ g2u000ðLÞ ¼ 0 for the case of
k 6¼ 0.

In order to have a non-trivial solution, the determinant of the coefficient matrix of the unknowns c1–c6
should satisfy the following condition

det ¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

���������

���������
¼ 0 ð52Þ

where

a12 ¼ a21 ¼ a14 ¼ a23 ¼ 0

a11 ¼ �n3; a13 ¼ h3; a22 ¼ �ðc � dÞL4n4 � n2; a24 ¼ �ðc � dÞL4h4 þ h2

a31 ¼ �n3 cosðnLÞ; a32 ¼ n3 sinðnLÞ; a33 ¼ h3 coshðhLÞ; a34 ¼ h3 sinhðhLÞ

a41 ¼ �ðn2 þ ðc � dÞ2L4n4Þ sinðnLÞ; a42 ¼ �ðn2 þ ðc � dÞ2L4n4Þ cosðnLÞ;

a43 ¼ ðh2 � ðc � dÞ2L4h4Þ sinhðhLÞ; a44 ¼ ðh2 � ðc � dÞ2L4h4Þ coshðhLÞ

ð53Þ

Fig. 4. Variation of the dimensionless buckling load Pcr=P 0
cr of the gradient case as a function of ðc � dÞ2p2. The classical boundary

conditions are uð0Þ ¼ uðLÞ ¼ 0 and Mð0Þ ¼ MðLÞ ¼ 0 and the non-classical ones u00ð0Þ ¼ u00ðLÞ ¼ 0.
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for the case of k ¼ 0, and

a11 ¼ a13 ¼ 0; a12 ¼ �ðn2 þ ðc � dÞ2L4n4Þ; a14 ¼ h2 � ðc � dÞ2L4h4;

a21 ¼ �ðn2 þ ðc � dÞ2L4n4Þ sinðnLÞ; a22 ¼ �ðn2 þ ðc � dÞ2L4n4Þ cosðnLÞ;
a23 ¼ ðh2 � ðc � dÞ2L4h4Þ sinhðhLÞ; a22 ¼ ðh2 � ðc � dÞ2L4h4Þ coshðhLÞ;
a31 ¼ �ðc � dÞ2L3n3; a32 ¼ �kðc � dÞLn2; a33 ¼ ðc � dÞ2L3h3; a34 ¼ kðc � dÞLh2;

a41 ¼ �kðc � dÞLn2 sinðnLÞ � ðc � dÞ2L3n3 cosðnLÞ; a42 ¼ �kðc � dÞLn2 cosðnLÞ þ ðc � dÞ2L3n3 sinðnLÞ;
a43 ¼ kðc � dÞLh2 sinhðhLÞ þ ðc � dÞ2L3h3 coshðhLÞ; a44 ¼ kðc � dÞLh2 coshðhLÞ þ ðc � dÞ2L3h3 sinhðhLÞ

ð54Þ

for the case of k 6¼ 0.

Fig. 5. (a) Variation of the dimensionless buckling load Pcr=P 0
cr of the gradient case as a function of ðc � dÞ2. The classical boundary

conditions are uð0Þ ¼ uðLÞ ¼ 0 andMð0Þ ¼ MðLÞ ¼ 0 and the non-classical ones u000ð0Þ ¼ u000ðLÞ ¼ 0. (b) Variation of the dimensionless

buckling load Pcr=P 0
cr of the gradient case as a function of ðc � dÞ2 and k ¼ 0:2. The classical boundary conditions are uð0Þ ¼ uðLÞ ¼ 0

andMð0Þ ¼ MðLÞ ¼ 0 and the non-classical ones ‘u00ð0Þ þ g2u000ð0Þ ¼ ‘u00ðLÞ þ g2u000ðLÞ ¼ 0. (c) Variation of the dimensionless buckling

load of the gradient case as a function of k and c � d ¼ 0:1. The classical boundary conditions are uð0Þ ¼ uðLÞ ¼ 0 and

Mð0Þ ¼ MðLÞ ¼ 0 and the non-classical ones ‘u00ð0Þ þ g2u000ð0Þ ¼ ‘u00ðLÞ þ g2u000ðLÞ ¼ 0.
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Fig. 5(a) depicts the variation of the ratio Pcr=P 0
cr as a function of the gradient coefficient product ðc � dÞ2

and k ¼ 0. It is apparent that the buckling load increases for increasing values of the gradient coefficient

product c � d. Fig. 5(b) shows the variation of the ratio Pcr=P 0
cr as a function of the gradient coefficient

product ðc � dÞ2 and the surface energy parameter k ¼ 0:2. Fig. 5(c) shows the variation of the ratio Pcr=P 0
cr

as a function of the surface energy parameter k and the gradient coefficient product c � d ¼ 0:1. It is ob-
served that the surface energy effect is negligible and that for some other non-classical boundary conditions

the normalized critical load versus normalized gradient coefficient relation may be slightly non-linear.

8. Conclusions

On the basis of the preceding discussion, the following conclusions can be stated:

(i) Using a simple theory of gradient elasticity with surface energy, the governing equations of beam bend-

ing and buckling and the corresponding boundary conditions (classical and non-classical) have been

derived.

(ii) The boundary conditions have been derived from a variational statement constructed either directly or

indirectly with the aid of the method of weighted residuals. The latter approach does not require any

knowledge of the strain energy, which is obtained here as a byproduct.

(iii) A characteristic boundary value problem of beam in bending has been solved and its gradient elastic
solution for the beam deflection has been found to decrease (but not very significantly) for increasing

values of the gradient coefficient c � d with the classical elastic solution being an upper bound. On

the other hand the surface energy effect has been found to be rather small, dependent on the non-

classical boundary conditions and to lead to either increasing or decreasing displacements depending

on the value of the gradient coefficient.

(iv) A characteristic boundary value problem of beam buckling has been solved and its gradient elastic so-

lution for the critical (buckling) load has been found to increase for increasing values of the gradient

coefficient with the classical elastic critical load being a lower bound. The surface energy effect has been
found to be insignificant.
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